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Introduction
From bloggers to influencers, the creator economy is estimated to be worth more than $104 billion and
has grown to 50 million entertainers (Flynn 2022). With 2 billion monthly logged-in users and more than a
billion hours of videos watched everyday (YouTube 2022), YouTube is a powerhouse for the creator
economy and is considered the second most popular website in the world (Similarweb 2022). Some
YouTube creators, also known as YouTubers, are able to make millions from advertisement revenue
share, brand partnerships, and product placements in their videos (Osborn 2022). Of course, not every
video topic generates strong revenue for creators, but cooking is considered a niche on YouTube with one
of the highest cost per thousand impressions (Tasty Edits). How do cooking YouTubers gain their
viewership, and how do they know whether their videos will be popular? We’ve developed a model that
creators can use to predict whether their cooking video will be popular before they upload it.

Data Extraction
To collect data for our model, we used two sources: YouTube’s API and YouTube-DL. To view the code for
data extraction and model development, view our Github repository. To view or download our final
datasets, check out our Google Drive.

YouTube API
YouTube’s API allowed us to extract videos by channel ID and by search query. In our first method, we
collected top videos based on a list of cooking keywords. Once we collected the top videos in YouTube
search results per keyword, we were able to expand our video list to include more videos from each
YouTube channel. In our second method, we gathered a list of ~50 online articles that detail popular
cooking YouTube channels. These articles typically based popularity on the channel’s total number of
views. After extracting the channel IDs and channel usernames from each site, we used YouTube’s API to
extract all videos from those channels. In total, we were able to collect more than 1.1 million videos
through these methods.

YouTube-DL
The youtube-dl extraction tool allowed us to collect more video details, such as subtitles and thumbnail
height features, without rate limit issues that are typical of the YouTube API. We also used this tool to
extract the highest quality thumbnail possible per video.

Data Considerations
Our team decided that it would make sense to remove YouTube shorts because they are inherently
different from the standard video on YouTube. To remove these videos, we filtered out any video that was
less than or equal to 60 seconds in length and videos that contained “#shorts” in the title. We also
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assured that there were no duplicate videos in our dataset by dropping duplicates on the video ID column.
Lastly, we limited our dataset so that all videos have subtitles and a thumbnail.

Overall, it took our team roughly 8-9 weeks to develop and complete data extraction. Although we were
able to extract more than 1 million videos from the YouTube API, our final dataset totaled closer to ~500K
videos due to time constraints. We ran our YouTube-DL extraction for 7 full days, but had to make a hard
cut so that we could move on with the rest of our project. From here, we split our dataset into 80% for
training the neural networks and 20% for training the final model. From there, each dataset was split
again for training and testing. See Appendix B to learn more about the datasets, columns and features we
used, and descriptive statistics.

Defining Popularity
Popularity is a word with many possible definitions, and many consider a video to be popular based on
the total number of views that the video accumulates. Some prior research has been made to predict a
YouTube video’s view count and popularity (Srinivasan 2017 and Li 2019), yet most prior research was
able to implement dislike counts into a popularity calculation before YouTube removed the metric from
public access.

While many channels have some “viral” videos that garner views far in excess of the channel median (and
possibly a healthy payday), we did not want to create a model that detected virality. Instead, we aimed to
find which videos generated sincere appreciation among viewers, hopefully leading to ongoing
viewership. This would be challenging considering how little nuance is offered by the API’s data. This led
us to use likes as the main proxy for popularity. In brief, our metric reflects how much the video’s likes are
above or below what is expected (in terms of best linear fit to view and comment counts), and measured
in standard deviations. See Appendix A, Description A1 for more details.

Figure 1: The original popularity metric for one channel.

Although the heuristic case for this metric is strong, our models struggled to converge when training to
predict it. For this reason we transitioned to a different metric based on principle component analysis of
the log number of views, likes, and comments. As shown in Figure 2, the PCA metric correlates well to



the (log of the) number of likes; in contrast, any relationship between the original popularity metric and
number of likes is much harder to see.

Figure 2: Comparison of original popularity metric and the one based on PCA.

Model
Our final model combines a convolutional neural network (CNN) with an ensemble model to make a
prediction on a video’s popularity. Whereas other research has been previously made to suggest a
thumbnail using CNNs (Arthurs 2017 and Çakar 2021), we use video thumbnails as input for our CNN to
predict the log number of video views. The final model uses the output from the CNN and other video
attributes to predict the popularity score.

Our original model combined a recurrent neural network (RNN) with a CNN to make predictions, but our
RNN failed to converge. Although our RNN didn’t work as intended, we were still able to extract
meaningful features from the textual data for our final model. See Appendix A, Description A2 for more
details on the RNN.

CNN Details
The CNN was used as a column transformer to create a usable feature from the thumbnail for each video.
We concluded that the impact of the thumbnail on a video's popularity is most likely related to the video's
view counts rather than likes or comments. This proved to be true in the training process. Similar to the
RNN, the CNN was not able to find a signal in the original popularity metric we developed, nor was it able
to find a signal in the updated PCA metric that was used by the final model. This is why it focused solely
on the log transform of the video's view counts.

It is important to note that many of the thumbnail images, especially from prominent cooking channels,
have logos in them. We believe that this can influence the CNN, biasing it towards popular cooking
channels or celebrity chefs. For more information on the CNN and its performance, see Appendix A,
Description A2.



Final Model Details
The goal of this final model was to use the feature created by the CNN and combine it with the rest of the
data that was then used to predict the popularity of a given video. The final model is an ensemble of three
tree based methods: lightgbm, random forest, and adaboost. Ensembling balances the biases of each
model by combining their outputs creating more accurate and stable predictions. This was done using a
method called stacking. First, each model produces predictions. Then, a final model, in this case
elasticnet, used those models’ predictions to make a final prediction. In development, there were other
models that were tried; however, it seems that the signal from the data was highly non-linear. All linear
models fared the same 0.8 RMSE worse than the tree based methods, and even those had to have fairly
deep trees to find the signal.

During the modeling process, we used a random forest model to extract the impurity based feature
importance, which is also known as gini importance (Scikit-Learn 0.23.2 Documentation). This indicates
which features are important in the model for prediction. At the top, we can see that the log of the video
view counts predicted by the CNN are considered the most important. See Appendix B, Table B1 for
column descriptions.

Figure 3: Features’ relevance to model performance.

Findings
The combination of models used proved to be fairly accurate at predicting the popularity of a video as we
defined it. The CNN added a significant boost in the final results with the thumbnail feature transform, and
although the RNN failed to converge we were still able to extract meaningful features from the subtitle and
description fields.



Figure 4: Model performance on holdout data.

Above is the final test result from the tuned and stacked models on holdout data. We can see that the
model overcame the few significant outliers from the CNN.

One question we wanted to answer is whether the addition of the CNN feature warrants the extra data
and compute resources required in training. In this case, it did add a definitive boost to the final model. To
show this, we used a basic linear regression model to predict popularity score with the CNN feature and
without it. The addition of this feature provided a reduction of .29 in the RMSE score. With the CNN
feature, RMSE=3.462154, whereas RMSE=3.757671 without the CNN feature.

Failure Analysis

RNN fails to converge
In our original plan, a RNN was intended to analyze textual data from the video subtitles and description
to predict popularity, but our RNN failed to converge. We attempted various basic modifications to the
neural network, yet still did not observe any decrease in the loss function. To double check our process,
we used a non-recurrent neural network with TF-IDF embedding and dense layers (which had functioned
well for one of us in a NLP task for Milestone II), but still saw no convergence. Most likely the relationship
between the subtitles and the popularity metric was too subtle to support a successful RNN without much
greater complexity and vastly more data.

The project may have benefited from the use of pre-trained linguistic models. It was probably optimistic to
suppose that a fresh RNN could learn enough about the various linguistic modes that these videos exhibit
to perform effectively in predicting a concept like popularity.

Examples of failure
For the CNN, there were two large outliers. The CNN predicted that the outliers were very popular with
millions of views, but one had a view count of 34 and the other had 4,615. Their thumbnails featured a
title on the left and a woman's face on the right. In fact, both of the videos were not about cooking at all
and likely came from the search-based data extraction method we used. To combat this, more advanced
filtering should occur to ensure that the videos being analyzed are all about the same topic.

The final stacking regression model seemed to take care of the outliers very well and there weren’t any
individual failures that pulled the model in one direction or another. Even the failures of the CNN didn’t
affect the result of the ensemble model.

Concluding Thoughts, Limitations, & Considerations



One challenge of our project is defining popularity. There are many ways to define popularity, but we were
limited to the metrics we can readily extract. More research and testing is likely needed to develop a
better version of our metric. Another limitation is that our research only focuses on cooking videos, so
more research would be required for other topics to see if our models are generalizable.

One ethical consideration is our web scraping and use of YouTube-DL. While web scraping publicly
available data is legal, there are regulations that further research should be aware of when scraping
websites. The information we scraped is publicly available and does not include personal data or
confidential information, but YouTubers are the copyright owners of their thumbnails. There are also
claims that YouTube-DL can be a breach of YouTube’s terms of service, depending on how one uses the
tool. It is worth noting that one should be cautious if using the tool to download copyrighted video
material.

Although our model was effective at predicting popularity, there are many ways to improve upon our
efforts. Whether it be developing an improved popularity metric or creating an RNN that converges, more
research is necessary to create a model that works not only on cooking videos, but also on other video
types. YouTube is considered the Internet’s largest hub of videos, and it would be great to make a
generalizable model that works for several topics. Lastly, as YouTube changes its video business strategy
towards short-form content such as Shorts, it would be useful to develop a model that works for both
long-from and short-form videos.

Statement of Work
Alex:

● YouTube-DL extraction
● CNN model
● Great Lakes
● Final ensemble model
● Final dataset construction

Corbin:
● Website scraping method
● Data extraction and cleaning
● Project manager

Jeff
● API extraction method
● Popularity metric definition
● Feature extraction
● RNN Model



Appendix A: Additional Descriptions

Description A1: Popularity Metric.
To find the pop_metric of a video v from channel C:

● Calculate LR, the best linear fit in C for number of likes, given number of views and number of
comments

● For a video v, if d(v) is the difference likes(v) - LR(v), define D as the set of all d(v) for v in C.
● Finally, pop_metric(v) is the z-score of d(v) in the set D.

Description A2: RNN Details.
The RNN module trained using the textual data contained in video subtitles. Subtitles are typically a
transcription of the video dialog and/or voiceover, and we believed they would reflect the video content
well. The subtitles were tokenized, and tokens were embedded into vectors and then used as inputs. The
neural network had an initial layer of LSTM cells, followed by a dense layer leading into a final output.
Since we are seeking to regress a continuous value (the popularity metric), the final output passed
through a linear activation function. We used the Tensorflow library for most aspects of the RNN.

Description A3: CNN Details.
The architecture of the CNN is similar to VGGNet, but we use a linear function to predict the popularity
score instead of a softmax function typically used in classification. The VGGNet has twenty layers in total
including twelve convolutional layers, five max pooling layers and three dense layers, the last of which is
the output layer. This VGNet architecture is preferred here as it has very good performance without being
prohibitive in its coding and training time. We could have used Alexnet which is quite a bit smaller with 8
total layers but with its larger kernel and stride size the performance would be significantly reduced.

The Model was trained using the GreatLakes Compute Cluster on three GPUs and took close to 36 hours
to complete 75 epochs. Below is the loss per epoch for both thain and val mean squared error loss
functions. The CNN was loaded from the checkpoint at epoch 19. And we can see that it did well except
for a few large outliers in the residual plot. This can be seen in the cnn_on_test_data.ipynb notebook in
our Github. On the test data the scores were:

● Root mean squared error: 2.740465
● Mean absolute error: 2.173752,
● r2 score: 0.243857

Description A4: Final Model



The ensemble method for the final model seemed to give the best results. This is compared with a basic
linear regression model. Seen below was thrown off by a few large outliers.

As part of the final model process other models were considered for the stacking regressor however even
when tuned they didn't fare any better than the basic LinearRegression model. Each of the tree based
models were first tuned using the hyperopt library then fed into the stacking regressor. All of the tree
methods had the best performance with deep trees. The lightgbm had a max depth of 17, the random
forest model had a max depth of 27 and the adaboost had a max depth of 19. The one that is most
surprising is the adaboost model. In the default configuration the decision tree base for the adaboost
model has a max depth of three. All of this including the parameter search space can be seen in
Final_model.ipynb.



Appendix B: Additional Dataset Information

Table B1: Column Directory

Column Source Description
chan_query YouTube API The query used to extract a given video; none for popular

videos via web scraping method
chan_id YouTube API YouTube’s unique ID per channel
chan_name YouTube API Channel name from channel creator
chan_viewcount YouTube API Channel’s total view count at the moment of extraction
chan_subcount YouTube API Channel’s total subscriber count at the moment of extraction
chan_start_dt YouTube API Channel’s creation date
chan_thumb YouTube API Channel’s thumbnail extracted by YouTube API
chan_vidcount YouTube API Channel’s total video count at the moment of extraction
vid_id YouTube API YouTube’s unique ID per video
vid_name YouTube API Video Title
vid_publish_dt YouTube API Video’s publish date
vid_thumb YouTube API Video’s thumbnail at moment of extraction; note that a

YouTuber can change thumbnails several times to A/B test
which drives more views

vid_duration YouTube API Video length
vid_caption YouTube API Boolean whether the video includes captions
vid_viewcount YouTube API Video’s total view count at moment of extraction
vid_likecount YouTube API Video’s total like count at moment of extraction
vid_commentcount YouTube API Video’s total comment count at moment of extraction
vid_seconds YouTube API Video’s length in seconds based on vid_duration column
description YouTube DL Video’s description
duration YouTube DL Video’s length
age_limit YouTube DL Whether the video has age restrictions
categories YouTube DL Category label for the video
tags YouTube DL Keywords that the YouTuber adds to their video
is_live YouTube DL If the video was live at the time it went up on youtube
width YouTube DL The resolution width of the video in pixels
height YouTube DL The resolution height of the video in pixels
fps YouTube DL Frames per second
vcodec YouTube DL Video codec used
vbr YouTube DL Video bitrate used
acodec YouTube DL Audio codec used
abr YouTube DL Audio bitrate used
thumb_name YouTube DL Thumbnail file name
subtitles YouTube DL Auto-generated subtitles per video
thumb_width YouTube DL Width of the thumbnail image
thumb_height YouTube DL Height of the thumbnail image



vid_name_chars Built Feature number of characters in the video title
vid_name_words Built Feature number of words in the video title
desc_chars Built Feature number of characters in the video description
desc_words Built Feature number of words in the video description
subtitle_chars Built Feature number of characters in the video subtitles
subtitle_words Built Feature number of words in the video subtitles
subtitle_words_unique Built Feature number of distinct words appearing in the video subtitles
has_profanity Built Feature whether the video subtitles contain (redacted) profanity
has_music Built Feature whether the video indicates musical accompaniment
has_links Built Feature whether the video description has URLs (boolean)
link_perc Built Feature how much of the description text is devoted to URLs
num_tags Built Feature The number of characters in the video tags
num_emoji_in_tags Built Feature The number of emoji in the video tags
cnn_thumb_preds Built Feature Output of CNN model

Table B2: Dataset Stats per Model.

RNN Dataset CNN Dataset Ensemble Dataset
Row Count 293,475 428,023 71,233
Video Views Mean 339,346 299,253 326,419
Video Views SD 3,061,501 2,767,015 2,562,924
Video Views IQR [541 - 75,300] [451 - 59,432] [509 - 66,995]
Video Likes Mean 5,902 4,953 5,547
Video Likes SD 37,437 36,030 31,959
Video Likes IQR [19 - 189] [16 - 1,328] [18 - 1689]
Video Comments Mean 373 311 355
Video Comments SD 2,519 4,284 2,533
Video Comments IQR [4 - 145] [3 -105] [4 - 134]

Table B3: Final Dataset Non-Boolean Feature Stats.

Mean SD IQR
duration 636.62 1020.04 [251.0 - 733.0]
width 1975.63 737.79 [1920.0 - 1920.0]
height 1143.54 425.97 [1080.0 - 1080.0]
fps 31.53 10.43 [25.0 - 30.0]
vcodec 22.71 2.78 [23.0 - 24.0]
vbr 3895.79 3920.13 [1893.46 - 3964.87]
acodec 1.36 0.48 [1.0 - 2.0]
abr 132.69 12.91 [129.48 - 133.26]
thumb_width 1123.67 352.71 [1280.0 - 1280.0]



thumb_height 633.49 195.49 [720.0 - 720.0]
pca_metric 1.07 4.45 [-2.35 - 4.36]
cnn_thumb_preds 8.83 1.93 [7.55 - 9.94]
vid_name_chars 55.93 22.65 [39.0 - 72.0]
vid_name_words 9.61 4.13 [6.0 - 12.0]
desc_chars 1224.27 1051.51 [441.0 - 1702.0]
desc_words 165.56 151.28 [56.0 - 225.0]
subtitle_chars 5548.49 10060.03 [65.0 - 7136.0]
subtitle_words 1070.08 1939.15 [10.0 - 1380.0]
subtitle_words_unique 271.49 303.26 [7.0 - 406.0]
link_perc 0.2 0.18 [0.04 - 0.32]
pca_0 0.04 0.25 [-0.15 - 0.24]
pca_1 0.12 0.36 [-0.13 - 0.22]
pca_2 0.04 0.21 [-0.13 - 0.18]
pca_3 -0.01 0.16 [-0.13 - 0.09]
pca_4 -0.01 0.14 [-0.13 - 0.08]
num_tags 17.06 12.31 [8.0 - 24.0]
num_emoji_in_tags 0.01 0.13 [0.0 - 0.0]

Figure B1: Visualizations for some column statistics.

Table B4: Final Dataset Boolean Feature Stats.



Count Share
vid_caption 9090 15%
Education 2634 4%
Entertainment 8459 14%
Film & Animation 1073 2%
Howto & Style 30416 50%
News & Politics 804 1%
People & Blogs 13829 23%
Travel & Events 1560 3%
other_category 1822 3%
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